作物单细胞和空间转录组学以及单分子测序等技术的开发优化和应用;作物再生过程中的分化和发育;作物转基因相关的小RNA干扰和基因沉默
- 简介
- 科研领域
- 学术发表
个人简介
2002-2013,北京林业大学,生物技术系学士,森林培育系博士
2010-2014,美国耶鲁大学,分子和细胞发育系,联合培养博士,博士后
2014-2016,美国加州大学戴维斯分校,博士后
2016-2022,南方科技大学,生物系,研究副教授
2021-至今,北京大学现代农业研究院,研究员
教育经历
2002-2013,北京林业大学,生物技术系学士,森林培育系博士
2010-2014,美国耶鲁大学,分子和细胞发育系,联合培养博士,博士后
2014-2016,美国加州大学戴维斯分校,博士后
工作经历
2016-2022,南方科技大学,生物系,研究副教授
2021-至今,北京大学现代农业研究院,研究员
科研领域
一、作物再生过程中细胞全能性的获得和再生细胞分化发育的命运决定机制
植物的细胞全能性获得和再次分化是细胞生物学最有价值的科学问题之一,也是大多数作物转基因技术实施的基础发育过程。对作物愈伤组织发育的研究往往受限于传统研究手段,特别是对细胞异质性的研究缺乏理想的研究技术。本课题组利用单细胞转录组和空间转录组等技术,检测作物再生过程中各类型细胞的基因表达、染色体开放区域,鉴定新的细胞类型特征基因,对细胞发育进行拟时序分析,建立基因调控网络并进行验证,为现在农业分子育种和深度发掘重要农艺性状的调控机制提供了前所未有的契机。
二、作物转基因引起的小RNA干扰和基因沉默机制
植物基因编码区产生的小干扰RNA(small interfering RNA,siRNA)能够诱导基因沉默,具有重要的植物发育调节和胁迫响应功能。siRNA是小RNA干扰技术的主效因子,其也会造成转基因应用中不可控的基因沉默,严重影响了现代作物分子育种的生产应用。然而,科学界对植物基因编码区siRNA产生机制的研究非常有限,主要的原因是植物基因编码区产生的siRNA较少,难以发现诱导多个植物基因产生siRNA的条件或遗传材料。因此,该领域的科学研究空白亟待探索。本课题组的研究旨在解决农作物转基因技术容易出现基因沉默,导致大量目标基因降解无法实现分子育种应用的突出问题。研究植物基因编码区siRNA产生机制,拓展对小干扰RNA的认知,加强对基因沉默发生机制的理解,为开发高效的RNA干扰技术和调控转基因中的基因沉默提供新的原理和方法。
三、作物中单细胞和空间转录组以及三代单分子测序技术的开发优化和应用
近年来,单细胞转录组学、空间转录组学以及三代测序技术等逐渐兴起,但由于成本高、操作难度大以及作物本身的复杂性等缺点仍需完善。本课题组在公共技术平台建设的基础上,对作物的单细胞和空间转录组测序技术进行开发和优化,同时和多个国际领先的生物技术公司以及多个课题组展开交流合作,并在作物转录后基因沉默机制的细胞特异性表达和功能上取得了显著的前期实验成果。本课题组也在基于作物的ONT三代单分子超长DNA片段测序的方法进行改良和优化,为作物基因组复杂重复区域的解析与高质量基因组组装提供了解决方案,推进了作物现代分子育种和优良性状改良的进程。
学术发表
1. Song X, Guo P, Wang M, Chen L, Zhang J, Xu M, Liu N, Liu M, Fang L, Xu X, Gu Y, Xia K and Li B. 2023. Spatial transcriptomic atlas of shoot organogenesis in tomato callus. bioRxiv, pp.2023-02.
2. Wu H *, Li Bosheng *, Iwakawa HO, Pan Y, Tang X, Ling-hu Q, Liu Y, Sheng S, Feng L, Zhang H, Zhang X. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature. 2020 581(7806):89-93. (一区,影响因子50,引用42)
3. Li Bosheng*, Wu H*, Guo H. Plant mRNA decay: extended roles and potential determinants. Current opinion in plant biology. 2018 45:178-84. (一区,影响因子8)
4. Li Yang *, Bosheng Li *, X. Z , J. L, G. H, X. D, C. A and Deng XW. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nature Communications, 2015 6:7309, *equal contributions (一区,影响因子11.47 引用次数 81)
5. Chen F*, Li Bosheng*, D. C. JB, Shi X, Deng XW. Photoreceptor partner FHY1 has an independent role in gene modulation and plant development under far-red light. PNAS. 2014 111(32):11888-93.35 (* equal contribution).(一区 影响因子11)
6. Chen F*, Li Bosheng*, D. C. JB, Shi X, Deng XW. Arabidopsis Phytochrome A Directly Targets Numerous Promoters for Individualized Modulation of Genes in a Wide Range of Pathways. The Plant Cell. 2014 16;26(5):1981-1991. 35 (* equal contribution). (一区,影响因子9.34 引用次数 47)
7. Jin D*, Li Bosheng*, Deng XW, Wei N. Plant COP9 Signalosome subunit 5, CSN5. Plant Sci. 2014 : 224:54-61. 35 (* equal contribution). (二区,影响因子3.9 引用次数11)
8. Li Bosheng, D. H, Li J, Deng XW, Yin Weilun, Xia Xinli . Global identification of miRNAs and targets in P. euphratica under salt stress. Plant Molecular Biology 2013 81: 525-539. (二区 影响因子4.25 引用次数 98)
9. O. X*,J.L*, G. L*, Li Bosheng*, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R, Li S, Wang H and Deng XW. Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development. The Plant Cell. 2011 Jul;23(7):2514-35 (* equal contribution). (一区 影响因子9.34 引用次数 98)
10. Li Bosheng, Q. Y, D. H, Yin Weilun, Xia Xinli Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. Journal of Experimental Botany 2011 Jul;62(11):3765-79. (一区,影响因子7 引用次数 270)
11. Li Bosheng, W. Yin, and X. Xia, Identification of microRNAs and their targets from Populus euphratica. BBRC 2009, 388272-7. (三区 影响因子2.3 引用次数 49)